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Abstract 
 
While the information security literature reported great advances in intrusion detection systems (ids) capabilities, it 

has neglected the weakness those systems in dealing with events that are detected when some state variable values 

are out of range but declared unknown because they could not find their definitions in ids databases. 

 

A distributed incident response generator (DIRG) is simply a distributed decision support system designed to generate 

incident responses in a distributed computing environment, when the existing ids system suspects an event that does 

not correspond to a known intrusion, residing in its databases. Since the suspected event is unknown to the ids, then 

the security administrator would have a great deal of uncertainty that should be feasibly managed to plan the 

appropriate incident response actions in a timely manner. In addition to the uncertainty associated with the suspected 

event, many data and information assets may be remotely located in a large organization, and an intrusion may be 

detected first in one location but not yet in another one. In this case, a distributed statefull inspection of critical 

resources can help identifying security incidents early enough to prevent further security compromises in the 

distributed computing environment. 

 

Every time the security administrator suspects an intrusion based an ids message of unknown event, he/she creates 

several scenarios of possible security incidents that are compatible with a multiple-domain security knowledge 

designed to enforce the security policy of the organization. Values of state variables are collected from remote 

locations through distributed statefull inspection activities for the purpose of obtaining enough evidence to plan 

incident responses for the unknown event ([16]; [19]). 

 

The type of data involved in intrusion detection when ample uncertainty is present is often not suitable to formal 

statistical models and Bayesian modeling is not appropriate. This article proposes the adoption of Dempster and 

Shafer theory to process the intrusion data for the unknown event. The DIRG system engine transforms intrusion 

data into a belief structure using the possible incident scenarios, the consolidated statefull inspection data obtained 

throughout the distributed computing environment, and the feasible security knowledge associated with the 

enforcement of the organization’s security policy. Belief values associated with various incident scenarios are then 

derived and evaluated to choose the most appropriate scenario for which an automatic incident response is 

generated. 

 

This article also provides a numerical example demonstrating the working of the DIRG system. 

 

Keywords: intrusion detection, incident response, distributed computing, decision support system, security risk, 

statefull inspection. 
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Intrusion 
The literature went many different ways in surveying intrusion detection system taxonomies. Each reported 

taxonomy may serve one investigation purpose but not another one depending on the objective of the study. In this 

article, we adopt Lazarevic et al.’s intrusion taxonomy because it provides information about several features that 

we need in studying unknown intrusions picked by a working ids system. The ids system, in this case, has sensors 

that detect out of range state variables to indicate a suspected even but without knowing the exact identity of the 

intrusion being executed. Lazarevic et al. () proposed an inclusive taxonomy based on attack type, number of 

network connections involved in the attack, source of the attack, computing environment, and automation level. 

 

Attack types have been organized by most of the literature as DoS, probing attacks, compromising attacks, and 

viruses. Other classifications of attacks will most often lead to one of those types ([8]). 

 

In addition to denying the use of resources and services to authorized users, DoS attacks aim at diminishing or fully 

eliminating the availability of computing resources by stalling networks, computers, or programs ([9]). There are 

operating systems attacks that exploit code bugs and flaws; and network attacks that exploit vulnerabilities in 

communication protocols. There are also distributed DoS (DDoS) attacks where multiple machines are deployed to 

eliminate availability of computer resources ([10]; [11]). It is very important that DDoS attacks be early detected and 

studied to understand the progress of attack activities so that quick responses can be planned for the purpose of 

limiting the ongoing effects. The probing attacks start by conducting surveillance and scanning to identify feasible 

victims. The scanning is needed to find the IP addresses they can explore to assemble all the information they need 

about the victim operating systems and offered services. Once enough vulnerabilities are known, attackers can then 

plan their attacks to inflict harm and discover more vulnerabilities ([4]; [7]; [15]; [17]). The compromising attacks 

can be performed by insiders or outsiders. These attacks aim at full penetration of systems to gain privileged access to 

computing resources and compromise their security. Outsiders who are not legitimate users of the system can gain 

access as users or root and break into systems. The higher the privilege obtained the more harm is inflicted to the 

victim system. 

 

On the other hand, insiders often have legitimate accounts with given privileges. They however can intentionally 

misuse the authorized services and elevate their privileges by exploiting discovered vulnerabilities in the systems 

where they are legitimate users ([5]). Viruses, with all their categories, consist of programs that replicate on 

computer systems and propagate through networks. They can erase files on the hard disk and install malicious 

programs. Categories of viruses have been defined in terms of their environments, their operating systems, the code 

they use, and their destructive power ([5]). The Number of network connections involved in an attack is also a very 

important feature of attacks. For example, DoS, probing, and worms are known to use multiple connections. Buffer 

overflow attacks are example of single network connections. Most compromising attacks are often very focused 

attacks that lead to penetration and they hence use single of a small number of networks. 

 

The Source of attack is also an important indication of the distribution of the attacks. It is very useful in planning 

responses to know where the attacks originate at. The environment of the attack is also a mandatory feature we need 

to know. Planning incident responses requires to know the computing environment where the attack is taking place. 

Wireless attacks will require different preventive and corrective actions than in connected environments. In a 

connected environment, it is also consequential to know the type of environment the attack is taking place, whether 

the attack is hitting a firewall, host machine, an entire network, or a VPN environment, for example. 

 

The automation level will indicate whether we are dealing with a manual attack, an automatic process, or both. Manual 

scanning of systems is not as fast and as propagating as automatic scanning and should be handled differently ([17]). 

 

An ids 
As in NIST (The National Institute of Standards and Technology), we view intrusion detection to be the monitoring of 

a computing environment and its inspection of signs of intrusion and attempts to compromise the confidentiality, 

integrity, and availability of its computing resources ([1]). 
 

Intrusions can be performed by either hackers when they access a computing environment or by legitimate users who 

abuse their privileges. An intrusion detection system is often made of both software and hardware tools designed to 

monitor a computing environment. Even though it sounds a long time ago when Dorothy Denning ([3]) has designed 

the first intrusion detection system, intrusion detection systems are still designed the same way. They are hence 

designed to 1) gather data through consolidating signals from divers sensors plugged around the network, 2) to detect 
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intrusive activities based on sensors’ information, 3) to sequentially populate databases given sensors’ information, 

and 4) to configure tools for defining the current state of the system so that effective responses can be planned in a 

timely manner. 

 

The literature advanced several features that need to be included is an intrusion detection system ([2]; [13]): Prediction 

performance, Time Performance, and Fault tolerance. 

 

Prediction accuracy alone is not sufficient to model ids performance. For instance, a valid ids that classifies network 

traffic as safe because a large portion, say more than 98%, is legitimate data, may not make sense and this is because 

the remaining small portion of less than 2% is still suspicious. If this performance criterion is sound then most ids 

systems will be sound and most transmitted data will be safe since ids accuracy has exceeded 98%. That is, the 

performance of an ids system should be rather linked to the quality of its output and this in terms of its detection rate 

and false alarms ([18]; [19]). 

That is, an ids should correctly detect intrusions and those detected intrusions can only be real intrusions an not 

legitimate activities. There are then two performance measures that are so consequential for an effective ids system: 

the detection rate and the false positive rate. The detection rate is computed as the number of correctly detected 

intrusion divided by the total number of intrusions. The false alarm rate is computed as the number of legitimate 

activities that are reported as intrusions divided by the total number of intrusions ([13]). 

The time performance of an ids measures the time lapse before an intrusion is detected including the processing time 

and the intrusion transmission time. The shorter the time the earlier a security administrator could plan a response 

([6]). 

 

 

The DIRG 
This study assumes a working ids system that can detect all known intrusion and alerts the security administrator to 

plan the appropriate incident response. Occasionally, the working ids system suspects some events that cannot be 

classified as known intrusions because the adopted security attack is not defined in the system’s intrusion knowledge 

base. In those occasions, the ids system alerts the security administrator of the suspected event and triggers the DIRG 

to provide assistance in recognizing the unknown intrusion and to later generate recommendations of the most 

appropriate actions that should be taken. 

 

As shown in Figure 1, when the DIRG is triggered as discussed earlier, the security administrator has to start the 

required input preparation for the DIRG: an event recognition record, distributed data containing among other things 

the current values of state variables, and the feasible specific security domain relevant to the event in question. 

 

At this point of the decision process, the event conditions only constitute an initial guessing by the security 

administrator on the possible scenarios given the ids report describing an unknown event. Then the information about 

the initial event conditions defined by the security administrator need to be evaluated using values of state variables 

taken at the organization’s distributed remote locations. Real-time distributed processing is essential to prevent the 

propagation of the suspected event 

 

The security knowledge base contains, for each security domain, the relevant security knowledge associated with the 

suspected event conditions, their state variables, intrusion properties, and confirmed corrective actions, in addition to 

all established certainty factors, if any. The knowledge availability is assured by the security policy and the working 

ids system where the DIRG is installed. In general, however, there are a variety of knowledge discovery and 

engineering techniques that can produce security knowledge needed for the DIRG system. Classification techniques, 

such as clustering, neural networks, decision trees, nearest neighbors, and pattern recognition are all examples of 

knowledge discovery tools that can be used to create knowledge or to enhance the existing knowledge bases. The 

security knowledge base may also be created by training using validated knowledge patterns collected throughout the 

life cycle of the organization’s security management system [12]. 
 

The DIRG system can also be activated automatically.  This will however require the addition of a module capable of 

identifying those event conditions associated with the information received from the working ids system and any 

scenarios assembled by the security administrator in the event record. The security administrator can then connect to 
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the DIRG system and enter his/her incident scenarios to fill out the security administrator’s part of the event record. 

This feature of the system is however considered beyond the scope of this article and may be studied in a future 

version of this article. 
 

The proposed DIRG system can be integrated in any computing environment with a working ids system without 

affecting the working of existing components. The quality of security decision support information generated by the 

DIRG system will depend on the quality of data and knowledge received from remote locations, the quality of the 

ids system’s information on the unknown intrusion, and the quality of specific knowledge base relevant to the event 

in question. If the distributed data on state variables or the knowledge bases contain errors or if the event record is 

not well defined then the DIRG will not be aware of those errors and the resulting erroneous information will be just 

processed as valid information and the output of the inference engine will certainly be affected. Eliminating data 

inconsistencies in the databases, validating contents of the knowledge bases, or detecting any other erroneous 

information in the DIRG input are beyond the scope of this article and may be studied in a future research project. 

Most critical distributed information resources have each its own security policy that defines its acceptable behavior 

as defined by its owners. Each behavior rule specifies all state variables that are indicative of an information 

resource’s acceptable behavior. Each state is defined either as a category or as a number. The categorical values are 

specified to indicate certain acceptable behaviors of the information resources and if the current state for one 

resource does not belong to the set of acceptable states then there is a problem; this is hence an undesired event. 

 

Sometimes, the undesired states are also specified and if the current state belongs to the set of undesired states then 

there is a problem; this is hence an undesired event. For example, a promiscuous workstation in a local area network 

is an undesired state that is not desired to have because it compromises the confidentiality of data exchanged on the 

network for the rest of users. The state variables may also be specified as ranges between a minimal number and a 

maximal number, for example, as for the bandwidth consumption state variable. If a current state variable, for an 

information resource, is out of range, then there is a problem; this hence is an undesired event. 

 
As depicted in Figure 1, the inference engine process is organized into the following steps: 
 

Step 1: The working ids system detects an event that does not correspond to a known intrusion. 

This information is stored in the event recognition record. 

 

Step 2: The security administrator studies the situation and identifies incident scenarios that can be 

responded to. The information of 1) and 2) is stored in the event record. 

 

Step 3: Based on the event record, the security administrator selects all security knowledge 

relevant to the suspected event. This is called the feasible specific domain knowledge. 

 

Step 4: Extract from distributed remote location values of the state variables and any relevant 

information needed in the recognition of the suspected event. 

 

Step 5: The DIRG system now has all needed input ready: event record, remote data on state 

variables, and feasible knowledge relevant to the suspected event conditions defined by 

the security administrator. This input is then submitted to the inference engine. 
 

Step 6: The inference engine processes its input and generates its recommendations to the security 

administrator. 

 

Step 7: The security administrator interprets system’s recommendations and plans the most 

appropriate incident responses. 

 

Step 8: The security administrator accepts DIRG recommendations. This ends the planning of an 

incident response. 
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Figure 1: Working of the DIRG 

 

 



6 

 

Let us assume that our system architecture and connectivity are adequately configured so we that our DIRG can be 

implemented. The DIRG is scalable as we can add as many historical intrusion management databases and feasible 

security knowledge bases as necessary. This architecture is an independent addition and cannot affect any existing 

technology including the ids databases and knowledge bases. This system requires the presence of a security 

administrator who needs to receive ids messages of the detected but unknown intrusion in a real-time manner. The 

security administrator provides all the information in the event recognition record that is later input to the DIRG to 

generate decision support information for defining the new intrusion and planning an incident response for it. 

 

 

Dempster and Shafer Theory 
Dempster and Shafer theory considers a frame of discernment Ω where all relevant objects reside. A measure from 

2Ω to [0 1] is called a basic probability assignment and is defined on subsets of Ω, to model the uncertainty 

associated with the propositions of interest. A proposition is simply a subset of the frame of discernment for which a 

basic probability assignment is needed. Mass values m can be assigned to propositions to represent the uncertainty 

associated with them as follows: 

 

m: 2Ω → [0 1] 

m(∅) = 0 

∑X⊆U m(X) =1. 
 

The mass m(X) represents the belief exactly committed to X, that is the exact evidence that the value of Ω is in X. 

Most often, whenever we have m(X)>0 then this means that there is real evidence that a value of Ω would be in X 

and we call X a focal element. 

 

Then, given all the evidence in hand, made of all the focal elements and their mass values, we can compute the total 

belief provided by available evidence for a proposition X, as follows: 

 

Bel(X) = ∑Y⊆X  m(Y). 

 

The belief value Bel(X) is the total belief committed to X, that is, the mass of X itself plus the mass values attached 

to all subsets of X. The value Bel(X) is then the total positive effect the evidence has on the value of Ω being in A. 

In addition to the belief value Bel(X) there is another quantity Pl(X) called the plausibility of X that expresses the 

remaining uncertainty associated with the negation of the proposition X. The plausibility function is defined as 

follows: 

 
Pl: 2Ω →[0 1] 

Pl(X) = ∑X∩Y≠∅ m(Y). 

 

The value Pl(X) is the sum of mass of X and mass values of all subsets that intersect with X. The plausibility of X 

measures then the extent to which the available evidence fails to negate X, and should hence be equal to 1-Bel(Not 

X). 

 

 
The inference mechanism 

Before further proceeding in discussing the inference engine, we need to define some variables as follows: 

 

V= ∏j=1,MV  Vj = Structured security domain space; 

Vj = Attribute number j in the security domain space, made of countable objects in Dom(Vj), the 

domain of the attribute; 

F = a subset of V containing the feasible security space where the solutions are relevant to the event 

record; 

e = event compatible with the structure of the security domain space V; 

∆ = Partial order relation on all data sets; 

R (a) = Risk associated with taking the assertion a. 
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1 Ne e 1 Me 

There are three input types to the inference engine: the event record, the distributed data from remote locations, and 

the feasible security knowledge corresponding to the suspected event conditions as defined by the security 

administrator given the detection of an undesired event. Our DIRG system assumes a common format made of 

hyper-tables for the event record, the intrusion management data, and the feasible  security knowledge bases. 

 
A table is a set of data arranged in rows and columns. Most often, the rows are called tuples and the columns are 

called attributes. The ith value ti in a tuple corresponds to the ith attribute Ai of the table and belongs to the domain 

Vi of the ith attribute. A tuple t is denoted t=(t1, …, tN) where ti ε Vi, i=1,N. 

 

While a row in a table is a tuple of singled values of the attributes, a hypertuple is instead a tuple of subsets of the 

attributes. That is, a hypertuple τ is denoted τ =< τ1, …, τN> where τi is a subset of Vi, i=1,N. A hypertable is simply 

a table of hypertuples and hyperdata is simply data made of hypertables. 

 

Consider then an event record e, e={e1, …, eMe} where ek=(ek , …, ek  ), k=1,M } and where {ek  , …, ek  }  is a 

subset of {V1, …, VMv}. Also let ∆ be a partial order relation on all the data sets on hand. If x and y are elements of 

a set E, we say that x∆y if and only if x⊆y. The inclusion defines the amount of support x provides to y, or 

alternatively, the amount of compatibility between x and y. 

 

Given two subsets E and G and x in G, we define the evidence support sG (x) of x in G as the set of y in G such that 

y∆x. That is, sG(x) = {yεG, such that y∆x}. The subset G is a poset with respect to the partial order relation ∆ and it 

may hence have elements that are related to x (fully compatible with) and others that are not related to x (not fully 

compatible). Only the compatible elements y in G such that y∆x are accepted to support x. 

 

 
How to derive an intrusion belief structure? 

As discussed above, there are three input types to the inference engine: the event recognition, the distributed data 

describing state variables from remote locations, and the feasible security knowledge corresponding to the security 

domain associated with the current suspected event. 

 

The intrusion belief structure is the ultimate output of the inference mechanism because it produces a consolidation 

of the three types of evidence needed to diagnose the suspected event conditions and plan the appropriate incident 

response. As shown in Figure 2, the basic probability assignment m(e) attributed to a candidate event scenario 

proposition ei is computed as the cardinal of the support sD(ei) that D gives to ei divided by the support sD(F) that D 

gives to the feasible security knowledge set F. Since sD(F) is a normalization factor, then this function m(.) from 2F 

to [0 1] is obviously a mass function. Other properties of this function are described in more details in ([20]; [21]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Deriving a belief structure for the current intrusion 
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The security administrator computation process consists of the steps discussed above. Those steps are performed in 

accordance with a structured algorithm that could be easily translated into computer code. This algorithm is 

designed as follows: 

 

Algorithm: Find the best security administrator’s assertion a* given an event recognition record:  

 

Begin  

1. Consider an event recognition record e={e1, …, eMe} where ek=(ek
1, …, ek

Mv), k=1,Me} and where { ek
1, …, 

ek
Mv} is in V1x…xVMv.  

2. For i=1,Me, do the following:  

a. Compute sG(ei) = |eiΔG|;  

b. Compute sG(F) =|FΔG|;  

c. Compute mG(ei) = |eiΔG|/|FΔG|;  

d. Compute Bel(ei).  

e. Compute e* = argmax[eiεe] Bel(ei)  

f. Compute a* = Projection [Assertions] (e*)  

g. Compute R(a*)  

End. 
 

We next explain the working of the inference mechanism algorithm which guides the security administrator to 

process available evidence and produce the belief structure from which the belief values are induced. At this 

point, we obtained a belief structure, as follows: 

 

mD: 2V  → [0 1] 
mD(x) = |sG(x)|/ |sG(F)| 
where sG(F) = {{yεG such that y∆x}, xεF} 

 

We then, given all the evidence stored in the belief structure just obtained, can compute the total belief provided by 

available evidence for a proposition e, as follows: 

Bel(e) = ∑Y⊆e  m(Y). 

 

The belief value Bel(e) is the total belief committed to e, that is, the mass of e itself plus the mass values attached to 

all subsets of e. The value Bel(e) is then the total positive effect the evidence has on the value of Ω being in e. 

 
At this point, we can have the information we need to evaluate the assertions on event conditions identified in the 

event recognition record by the security administrator. We need to compute the belief values of all assertions 

expressed in the candidate propositions {ei, i=1,Me}. Once the best proposition e* is produced we need to project 

over the assertion attribute to obtain the best security administrator  assertion a*. We then have the following: 

 

e* = argmax[eiεe] Bel(ei) 
a* = Projection [Assertions] (e*). 
 

The intrusion analysis ends with the security administrator planning an incident response according to the DIRG 

recommendations. 

 
Finally, and as in any decision process under uncertainty, there will be always risk associated with the security 

administration decision process. This risk R(a*) is defined as the plausibility of the evidence against the selected 

assertion; that is, the plausibility of the negation of e*. This amount is also equal 1 minus the belief of e*. We then 

have: 

 

R(a*) = Pl(not a*) = 1 – Bel(e*). 

 

Unfortunately, in practice, the computations above may be very lengthy and expensive when the feasible security 

space F is large. The normalization factor can be very costly when F is large. The normalization factor is originally 

computed as the total support of D in F; that is, we have to consider every element in F and count the number of 
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element in D that are compatible with this element in F. This is simply too long and too expensive. We can show, as 

in ([19]; [20]; [21]), that we can instead consider the elements in D and count the number of elements in F that are 

compatible with this element in F. This may be written as ∑fεF [{dεD such that d∆f}] = ∑dεD [{fεF such that d∆f}]. 

 
Then, as in ([19]; [20]), we can compute the mass values as follows:  

 

sD(e) = ∏i=1,Me 2
|ai|-|ei|; 

sD(F)= ∑xεF {∏i=1,Me 2
|ai|-|xi|}; 

mD(e) = |sD(e)|/ |sD(F)|. 

 

 

Numerical example 
Consider a working ids that generated a signal indicating the presence of an intrusion of unknown type. The security 

administrator received the ids message and proceeded by defining the event recognition record where he/she defined 

several propositions listing different scenarios of the intrusion situation. 

 

Assume that the event recognition record e is made of two propositions: e= e={e1, e2}. These two scenarios are 

included in the event recognition record provided in Table 1. 

 

e={e1, e2} 

e1 = <{T3, T2}, {a2, a5}, {L, H}, {L, A}, {L}, {L, H}, {L, H}, {1H}, {U}, {L, H}, {HL}> 

e2 = <{T5}, {a1, a2}, {L, A}, {L, A, H}, {A}, {L, H, {MH}, {U}, {L, A}, {HL}> 

 

Table 1: Event Recognition Record 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

{T3, T2} {a2, a5} {L, H} {L, A} {L} {L, H} {1H} {U} {L, H} {HL} 

{T5} {a1, a2} {L, A} {L, A, H} {A} {L, H} {MH} {U} {L, A} {HL} 

 
Assume that the distributed state variable data in remote locations has been consolidated and produced the data 

stored in Table 2. Also assume that the feasible knowledge available for this type of event is given in Table 3. 

Incident responses are the actions to take whenever a suspected intrusion is confirmed. The following incident 

responses are considered: 

 

a1: Structured exception handling using try/catch blocks a2: Catch and wrap exceptions 

a3: Implement a global exception handler a4: Do not log private data 

a5: Use proven platform-provided cryptography 

a6: Reduce session timeouts a7: Secure critical channels 

a8: Constrain, reject, and sanitize input. 

 

The types of intrusion recognized by the ids system are listed as follows:  

 

T1: Elevation of privilege 

T2: Information corruption 

T3: Information disclosure  

T4: Forgery 

T5: Denial of Service (DoS) 

T6: Scripting 
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Table 2: Historical Intrusion Management Data 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

{T3} {a5} {L} {A} {L} {H} {1H} {U} {H} {HL} 

{T5} {a2} {L} {L, A, 

H} 

{A} {L} {MH} {U} {L} {HL} 

{T1} {a1} {L} {H} {H} {L} {1N} {W} {H} {HL} 

{T3} {a5} {L} {L} {L} {H} {1H} {U} {H} {HL} 

{T5} {a5} {A} {H} {A} {H} {1 H} {W} {A} {ML} 

{T3} {a6} {A} {H} {A} {A} {MN} {WL} {H} {VHL} 

{T5} {a5} {L} {A} {A} {A} {I} {U} {H} {SL} 

{T1} {a1} {L} {L} {A} {L} {1H} {M} {A} {HL} 

 

 

Table 3: Feasible Security Knowledge 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

{T3, T2} {a2, a5} {L, H} {L, A} {L} {L, H} {1H} {U} {L, H} {HL} 

{T5} {a1, a2} {L, A} {A, H} {A} {L, H} {MH} {U} {L, A} {HL} 

{T1, T5} {a3, a7} {L, H} {L, H} {H} {L, H} {1N} {W} {L, H} {HL} 

{T3, T4, 

T6} 

{a2, a4, a8} {L} {A} {H} {L} {I} {U} {L} {SL} 

{T3, T5} {a5, a7} {A, H} {A, H} {L, H} {A, H} {1H} {W} {A, H} {ML} 

{T5, T6} {a6, a8} {A} {H} {A} {L} {MN} {WL} {A} {VHL} 

{T5, T6} {a2, a6} {L, H} {L, H} {L, A} {L, A} {I, 

MH} 

{U} {L, H} {ML, 

HL} 

{T1, T3} {a1, a5, a6} {L, A, H} {L, A, H} {L, A} {L, H} {1H} {U, 

M} 

{L, A, 

H} 

{HL} 

 

 

Table 4: Computation of the normalization factor |sDα (F)| 

Feasible tuples |sDα (x), x in F| 

F1 2 

F2 1 

F3 0 

F4 0 

F5 1 

F6 0 

F7 1 

F8 2 

Total: 7 

 

 

We then obtain the following belief values: 

mD(e1) = |sD(e1)|/ |sD(F)| = 2/7 = 0.29 

mD(e2) = |sD(e2)|/ |sD(F)| = 1/7 = 0.14 

BelD(e1) = .29 

BelD(e2) = .14 

 

Risks associated with the security administrator’s decision are as follows: 

R(assertion(e1) = 1- BelD(e1) = .71 

R(assertion(e2) = 1- BelD(e2) = .86 
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One can then see that the optimal solution for the security administrator is to select the assertion {a1, a5} = {Catch and 

wrap exceptions, use proven platform-provided cryptography} that has the highest belief value. 

 

Managerial implications 
The DIRG system we proposed fits in any computing environment with an ids system to enhance the evidence 

management process that is needed to assure the security of the organization. Without this addition, there will be many 

incidents that cannot be managed based only on the signals generated by the existing ids system. Due to the absence of 

statistically sound models and the existence of intrusion data that does not satisfy the statistical assumptions required 

by those models, ids information may be erroneously combined and inadequate analytical models may be adopted to 

manage this type of evidence which will lead to imprecise recommendations. 

 

We discussed in this article that because of the structure and incompleteness of intrusion data a Bayesian model was 

not possible. Also, any other analytical model will be ignoring the feasible security knowledge used by our DIRG 

system to validate the security administrator’s definition of the incident recognition record. The proposed system uses 

every information capability available in the computing environment to generate sound incident response decision 

support for the security administrator. We included incident response information from the incident recognition record, 

historical incident management information, and any available feasible security knowledge to validate the security 

administrator’s decisions. 

 

From the technical side of the proposed system, we proposed a method to collect, assemble, and combine evidence 

before decision support is generated. Event analysis can benefit from our proposed method and the intrusion 

management data combined with available relevant security knowledge before producing incident response 

recommendations. We showed how to transform intrusion data into belief structures that can be combined and 

processed. Belief measures may be obtained and the incident response assertion that corresponds to the highest belief 

is the one to be retained. Incident response recommendations are designed according to the retained belief values. 

 

The belief model we presented is not only useful to process decision support in intrusion management, but it is also 

valuable to any other decision situation where there is decision support under uncertainty and available data in the 

computing environment. When a Bayesian model cannot be constructed, and only partial information is available, the 

construction of a belief model is consequential. In this case, optimal decisions can be made and risks assessed in a 

statistically sound way. 

 

 

Conclusion 
While most of the literature reported great advances in ids capabilities, it has at the same time neglected the weakness 

of ids systems in dealing with events that are detected when some state variable values are out of range but remained 

unknown because they could not find their definitions in ids databases. That is, even when sensors detected those 

undesired events, the ids systems still failed to identify the corresponding intrusion in its ids data bases. 

 

This paper discussed how uncertainty is processed and proposed a distributed incident response decision support 

system that can be added to any ids environment. 

 

In designing the proposed DIRG system, this paper proposed a method to construct belief structures based on event 

recognition records and the feasible security space associated with the event recognition process. Security 

administrator’s assertions are processed and optimal incident responses are generated in a risk-driven manner. The 

paper also provided a numerical example to demonstrate the working of the proposed method. 

 

There is a great deal of uncertainty in many areas in intrusion detection for which the Bayesian formalism is not valid 

due to the statistical assumptions that cannot be verified in available data. Professionals working at the decision 

support level in security management can transform available data into belief structures that can be easily combined 

using Dempster’s rule and processed to provide the decision support they need with better accuracy. 

 

As future directions, the proposed DIRG system can benefit from adding partial compatibility (instead of full 

compatibility studied in this article) by stretching the partial order relation used in processing the evidence support 

mechanism. Instead of counting as compatible only those subsets of the historical intrusion management data that fully 
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belong to instances of the feasible security knowledge, we can study what could happen if we also count those subsets 

that only intersect (instead of one being fully included in the other) with hypertuples in the feasible knowledge base. 

Those intersections, no matter how small they are, hold partial information the effects of which on the incident 

response recommendations need to be studied. This concept of partial compatibility may be useful in cases where ids 

messages and historical intrusion data are too general to lead to precise incident response recommendations or when 

we are dealing with intrusions that are new to the feasible security knowledge base. 
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